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Società Italiana di Fisica
Springer-Verlag 2002

Self-similarity in highway traffic

E.G. Campari1,a and G. Levi2

1 Physics Department of Bologna University and Istituto Nazionale per la Fisica della Materia viale Berti-Pichat 6/2
40127 Bologna, Italy

2 Physics Department of Bologna University and Istituto Nazionale di Fisica Nucleare viale Berti-Pichat 6/2
40127 Bologna, Italy

Received 23 April 2001 and Received in final form 28 September 2001

Abstract. Highway traffic as simulated with a simple cellular automata model has been analysed in a search
for self-similarity in the behaviour of car density and car flow as a function of space. Fractal dimensions
between 1.5 and 1.6, depending on the simulation characteristics, have been measured with a box counting
algorithm. The self-similarity spans over about 2 orders of magnitude. A comparison with experimental
data is suggested.

PACS. 05.45.Df Fractals – 45.70.Vn Granular models of complex systems; traffic flow

1 Introduction

Traffic flow is a problem which is increasingly attracting
the interest of scientists. This is due partly to the great
economical and social relevance of the problem, partly to
the interesting features which are emerging from its study.
Let us consider highways, for instance: different kinds of
traffic can be found and transitions between them which
resemble phase transitions [1–3]. There are density and
flow waves, which can born spontaneously or be triggered
by roadworks or ramps [4–7]. Some of these waves are
non-dispersive and could even be solitons [8]. More gener-
ally, traffic reveals itself as an highly non linear system [9]
and therefore exhibits most of the features which are com-
monly found in those systems.

A peculiar feature of many non linear systems is the
generation of structures which appear self-similar under
varying degrees of magnification. The observation of a self-
similar behaviour on a number of scales lets us define and
measure a fractal dimension. Strictly speaking, the fractal
dimension of a set is just a geometrical feature of that set.
Nevertheless, when the set is originated by measurable
quantities from a physical phenomenon, like earthquake
tremors, certain chemical reactions or fluid turbulence,
this geometrical feature reveals something about the sys-
tem dynamics. The presence of a fractal dimension first
of all confirms the system’s non linearity. But also can be
a signature of deterministic chaos: a behaviour of systems
whose dynamics is attracted towards a strange attractor,
which is self-similar [10,11].

Computing a value for D, the fractal dimension, has
at least a double meaning: (a) It can be a powerful tool to
investigate the dynamical properties of car traffic treated
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as a physical system, detecting for example different flow
conditions. (b) The computed value can be compared to
a measured value from real data in order to have a better
understanding about the validity of the model.

The state of a highway is usually given by the value of
car density, ρ, and car speed, v, as a function of the dis-
tance x from the road beginning or as a function of time t
at a fixed point along the road. Car flow, f , is then com-
puted as f = ρv. Therefore, the variables defining the sys-
tem are functions of both time and space. A 3-dimensional
plot of these variables yields highly fragmented patterns.
This suggests that it is possible to measure their eventual
fractal dimension, which should be a number between 2
and 3. As stated by Mandelbrot [16], a linear section of
a surface like ρ(x, t) should still be a fractal, with dimen-
sion reduced to D − 1. A well known example of this be-
haviour is Earth landscape, whose fractal dimension is be-
tween 2 and 3, while coastlines-landscape sections at con-
stant height- have a dimension between 1 and 2. In the rest
of this article we will describe how we analyzed simulated
highway traffic data, obtained with a simple cellular au-
tomata model, in search for a fractal dimension. Following
the suggestion mentioned above, we will limit our analysis
to one dimensional curves, that is to car flow and car den-
sity along the highway at fixed time. This choice makes
it possible to employ for the data analysis algorithms like
the Yardstick method (see Sect. 3) which cannot be used
for surfaces. Furthermore, fixing time or space helps hav-
ing more homogeneous data, which is what we need in
order to look for differences in the fractal dimension of
the phases of traffic. To our knowledge, a similar task was
previously done only on a single lane round-about without
entrance or exit [12]. This is so unreal as a highway model
as to cast doubts on its usefulness for any comparison
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Fig. 1. Cars move from left to right along the two lane highway.
At each iteration every car position, given by the occupation
of a cell, and car speed are updated according to a defined set
of rules.

with experimental data. We plan in the near future to
accomplish a similar analysis on real data, which will be
collected on Italian highways, to check the simulated re-
sults.

2 Highway model and traffic phases

In order to simulate traffic for a 2 lane highway, we built
a cellular automata model [8,13], which provides a simple
physical picture of the system and is easily implemented
on computers. In our model, the highway lanes are divided
into cells which can be either empty or occupied by a
car (see Fig. 1). The road starts at cell 1; cars, which
enter the road at its beginning and at on-ramps along
the highway, move in discrete steps (named time ticks in
the following) in the direction of increasing cell number.
Since on and off-ramps are equivalent in many effects, like
jams generation [6,8], in this model there are no off-ramps
except for the highway end, where cars leave the road. On-
ramps are modeled as a single entrance cell in lane 1.

A set of rules, described in details in reference [8],
specify the time and space evolution of the system.
These rules were derived from those originally developed
by Schreckenberg and coworkers [14] and by Nagel and
coworkers [5] to implement a multilane highway without
ramps and with periodic boundary conditions. These rules
specify at each step and for every car: (a) the speed with
which cars move along the road, (b) how faster cars over-
take slower ones and (c) how cars slow down or accel-
erate according to the behavior of neighbouring vehicles.
The model is asymmetric: one lane is for normal cruise,
the other for overtaking. Cars have an unbounded braking
ability in order to avoid car accidents.

In each traffic simulation a starting highway configura-
tion is chosen. Street length, on-ramps number and loca-
tion, position and speed of cars already inside the highway
are set up. New cars enter the highway at a chosen rate
as such: for all on-ramps, at each iteration the program
checks if the cell is empty. If empty, a random number
in the [0,1] interval is generated and if it is less than the
threshold chosen for that simulation, a car is generated in
that cell with a speed of 2 cell/time tick. At each iteration
a number of local and average quantities are recorded. For
each car, position and speed; for each cell, mean speed,
density and flow, averaging over the 100 cells before and
after the given cell. The use of averages is due first of
all to the discreteness of cellular automata models. Cars
in the model can only have as speed an integer number
between 0 and 9, while car speeds are real numbers in
nature. Furthermore, experimental data are averages over
time and/or space [1,3], so that a proper comparison again
requires one to average simulated data. A comparison, of
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Fig. 2. (a) Flow as a function of density as obtained in a
cellular automata simulation. Points on the left correspond to
cars in free flow conditions while those on the right are due to
congested flow conditions. (b) The results of a different simula-
tion are reported using a population level contour plot. In the
contoured regions are found about 99% of the points. Moving
from left to right are found a region with cars in free flow, in
synchronized flow and in congested flow.

course, can be done only after a length is attributed to a
cell and a time tick is turned into time. With the reason-
able choice of cell length = 5 m and time tick = 1 s, a
speed of 6 cell/time tick corresponds to 108 km/h.

As reported elsewhere [8], this model proved to be able
to reproduce some of the experimental data available on
highway traffic. A noteworthy example is reported in Fig-
ures 2a and b , where it is shown the so-called fundamental
plot of traffic as obtained in two simulations with differ-
ent parameters. In Figure 2a every point corresponds to
a value of car flow as a function of car density from the
first simulation. At low density, points ideally align along
a first curve with positive slope, while at higher densi-
ties they stack on a negative slope curve. In Figure 2b a
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Fig. 3. Histogram reporting the average distance (gap) be-
tween cars for the same simulation of Figure 2b. The peak
centered between 2 and 3 cell is that of congested flow; the one
at about 5 cell that of synchronized flow while the last peak,
at about 68 cell is that of free flow. The peculiar shape of the
histogram at high gap values is due to the use of a discrete
model. At low densities the graininess of the model becomes
evident.

population level contour plot is used to put into evidence
how traffic concentrates into three regions, corresponding,
from left to right, to free flow, synchronized flow and con-
gested flow. These are the main phases into which traffic
can be subdivided. In the following, we will give a brief
description for each of these phases. For a more complete
description the reader is referred to [1] for a general re-
view and to [4] for some experimental data showing the
appearance of these phases in real highway traffic.

Free flow is a condition where fast cars can easily over-
take slow ones, there are large gaps between cars and traf-
fic flows easily. It is, in a sense, the ideal traffic condi-
tion, for cars are almost free to run along the highway
as they like. This phase occurs at low car density (be-
low 0.1 car/cell in the computer simulations of this work),
where the more cars there are in the road the higher is the
flow, producing the elongated region with positive slope
in the fundamental diagram of Figures 2a and b. At the
opposite range of density, is found the so-called congested
flow. It is a condition of heavy traffic, with flow decreasing
with increasing car density (negative slope region at the
right of Fig. 2b) and easy formation of jams. Overtaking is
extremely difficult and car speed can be nearly zero. Syn-
chronized flow is intermediate between the former and the
latter. It is defined as a state of traffic in multilane roads
in which the vehicles in different lanes move with almost
the same speed, about 1/2 that of free flow. In this re-
gion flow can be high in spite of an increasing density, but
the linear correlation between flow and density is lost and
the two quantities becomes totally non-correlated. At each
phase of traffic corresponds a different value of the average
distance between cars [15]. This is reported in the car gap
histogram of Figure 3. Data comes from the same simu-

0

0.05

0.1

0.15

0.2

0 2500 5000 7500 10000
 space (cell)

 d
en

si
ty

 (
ca

r/
ce

ll)

(a)

0.2

0.3

0.4

0.5

0.6

0.7

0 2000 4000 6000 8000 10000
 space (cell)

 fl
ow

 (
ca

r/
tim

e)

(b)

Fig. 4. (a) Car density as a function of space at time t = 4800
time ticks from the beginning of the simulation. It is shown a
highway portion 10000 cell long. Traffic is in free flow condi-
tions. (b) Car flow corresponding to the same conditions re-
ported for Figure 4a. A grid is superimposed on the figure to
illustrate how the box counting algorithm works.

lation used to produce Figure 2b. Three peaks are shown
in this histogram: the peak centered between 2 and 3 cells
is that of congested flow; the one at about 5 cell that of
synchronized flow while the last peak, at about 68 cells is
that of free flow.

3 Fractal analysis

A typical plot as obtained from our simulations for car
density as a function of space at fixed time, is shown in
Figure 4a. In Figure 4b car flow is plotted in the same
conditions. Similar curves were obtained for ρ, v and f ,
plotted as a function of time at fixed space. The repeated
fragmented look common to all of these plots when viewed
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Fig. 5. Three successive magnifications by a factor 2.5 of that
part of Figure 4b centered about cell 4000. At every magni-
fication a point distribution like the original one is obtained,
with the partial exception of the bottom figure. Here the scale
is comparable to the number of cells used to compute averages
(200 cells).

at different scales is evidenced in Figure 5, where portions
of Figure 4b at increasing magnification are shown in se-
quence. In the following will be described results obtained
on car density and car flow in simulations with different
starting conditions.

The curves are analysed with the box counting algo-
rithm [11,12,17,18]. This is probably the most widely used
algorithm to extract a non integer dimension from some
data. Let consider for example Figure 4b. The plot area is
divided into 25 boxes with side length 1/5 of the abscissa
and ordinate range of variation. This can be done again
and again using n2 boxes of decreasing side length (1/n of
the whole length). An estimate of the fractal dimension D
of the curve is obtained from a linear fit of log(N) as a
function of log(1/n), where N is, for any value of the side
length, the number of squares which contain at least one
point of the curve. With a simple computer program the
value of N is readily obtained. In Figures 6a and b are
shown the results of such an analysis for two simulations
with cars in free flow and congested flow conditions. The
capability of the program to correctly yield the fractal
dimension of several point sets was tested with fractal ob-
jects taken from mathematics and with non fractal curves.
Some results of these tests are reported in Table 1. A fur-
ther analysis, based on the discrete Fourier transform was
accomplished, revealing that our traffic data do not have
periodic components.

Only a subset of the points of Figures 6a and b can be
fitted by a line whose slope is computed to be D = (1.55±
0.01) for the free flow condition and D = (1.49 ± 0.01)
for the congested flow condition. These subsets roughly

(a)

(b)

Fig. 6. (a) Box counting analysis of car density for a simula-
tion in free flow conditions. Data sticks to a line whose slope
D = 1.55 ± 0.01 is taken as the fractal dimension of that traf-
fic simulation. (b) Box counting analysis of car density for a
simulation in congested flow conditions. Here is found a fractal
dimension D = 1.49 ± 0.01. The slope change for the points
at the extreme right of the figures occurs when the box side
becomes smaller than the average number of cells used to com-
pute the averages.

correspond to a box side ∆x ≥ (200 cell), 200 being the
number of cells used in the simulations to compute average
quantities. The limitation occurs because when the square
side is lower than the value used to compute averages, the
averaging process starts smoothing away every eventual
fractal scaling. Unfortunately, the number of cells used to
compute averages, cannot be reduced too much below 200,
since this would produce density, speed and flow values too
rough to have any interest for the study of traffic.
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Table 1. Some well known fractal sets (first column) are anal-
ysed with the box counting algorithm. In the second and third
columns, respectively, are reported the exact value and that
obtained with the program used to analyse traffic data.

Fractal Dth Dbox

Sierpinski gasket 1.585 1.59±0.01

Sierpinski carpet 1.893 1.87±0.02

Kock curve 1.2618 1.269±0.007

quadratic Kock curve 1.5 1.481±0.005

sin 1 1.001±0.001

The existence of a lower boundary to the feasibility
to analyse our simulated data in search for a fractal di-
mension is peculiar to the use of a cellular automata al-
gorithm. Despite simulations based on differential equa-
tions or other continuous models, here a discreteness is
introduced from the beginning. Therefore, even if this is
a numerical work, the granularity of the system forbid
to obtain a fractal range larger than that of real data.
The fractal dimension of most real systems usually spans
no more than 1 or 2 logarithm decades, like in the well
known case of country boundaries data [19] or stock mar-
ket prices [20] or fractal slip in crystals [21,22]. Here, the
measured fractal range, for the best cases analysed up to
now, span 1.96 decimal decades.

Confidence in the goodness of our results is provided
by two facts. First of all the quality of the model, which
is surprisingly close (being so simple) to real highway
data for other measured quantities. The second fact is the
comparison with mathematical fractals, like the Kock or
Sierpinski curves. These sets exhibits self similarity at ev-
ery scale. Starting with their construction rule, we gener-
ated subsets of these objects containing the same number
of points as the sets used to compute the fractal dimension
of traffic data. As reported in Table 1, their fractal dimen-
sion is correctly computed, but due to the finite number
of points in the set the self-similarity never spans more
than 2.5 decades. Taking into account the absolute noise-
less of these data sets, we believe that up to 1.96 decades
for highway traffic is a good result.

In summary, the search for a self-similar scaling in a
cellular automata traffic simulation suffers from a dou-
ble limitation. Firstly, the limited range over which every
natural phenomenon exhibits self-similarity. Secondly, the
above mentioned smoothing effect, due to the use of a
discrete model.

The simulations analysed with the box counting
show D values scattered in the 1.4–1.6 range both for
car density and car flow. This spread in D values com-
ing from simulations performed with different traffic con-
ditions, suggested us to consider if any significant differ-
ence in fractal dimension could be found between phases
of traffic. This would represent a way to distinguish be-
tween them. In order to test this hypothesis, we analyzed
simulated data from the phases which are most different
between them in terms of traffic flow. These are free flow

Table 2. Average values of fractal dimension D from simu-
lations with free flow conditions or congested flow conditions.
The D values are obtained with the Box counting algorithm.
Synchronized flow was not analysed also because of the diffi-
culty in having large portions of the street with this kind of
flow. At each value is associated the standard error of its mean.

Traffic phase D(free flow) D(congested flow)

Car flow 1.565±0.012 1.547±0.016

Car density 1.546±0.019 1.515±0.025

and congested flow, which should exhibit the greatest dif-
ference. Table 2 reports the average results of 12 different
analysis of each phase for car density and car flow as a
function of space at fixed time. Despite our hope, the re-
sults of the simulations analysed up to now with the box
counting method do not reveal a significant enough D dif-
ference, even if the average D value of free flow is slightly
greater than that of congested flow. It is to say that traffic
conditions along our highway, usually 10 000 to 20 000 cells
long, are never completely uniform. As it happens in a
long highway, the prevalence of congested traffic do not
exclude the presence of sections with a more fluid traffic
and vice versa. This effect would mix up D values, decreas-
ing their difference. It is also possible that highway traffic
flow is multifractal in nature, that is an object whose dif-
ferent regions have different fractal properties [23]. Again,
our analysis would compute an average D value.

Searching to understand if the little D differences mea-
sured with the box counting could really be a signature of
a difference in fractal dimension between free flow and con-
gested flow, we reanalysed the same data with another al-
gorithm: the yardstick or structured walk method [11,16].
With this new algorithm, evidences of a difference in frac-
tal dimension between traffic phases were clearly found.

The yardstick algorithm prescribes to repeatedly mea-
sure the length of a curve using yardsticks of always de-
creasing length L and can be outlined as follows:

1) set the yardstick (or compass) at a step length L;
2) take the initial point of the curve;
3) draw an arc, centered at the initial point, which

crosses the curve;
4) the point where the arc first cross the curve becomes

the centre of a second arc;
5) draw a new arc centred at the crossing point and

repeat the above procedure until the curve end is reached.
6) take a shorter step length L and start again the

measuring procedure.
As for the box counting method, an estimate for D is

obtained from the slope of log(N) versus log(1/L). N is
the number of times the yardstick of length L is used to
measure the curve length and increases as L gets shorter
and shorter. This algorithm is usually equivalent to the
box counting one, but is less versatile, being limited to the
study of curves in the plane. The case of our traffic data
is one of those where the method is not equivalent to the
box counting and provides dissimilar D values. Another
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Table 3. Average values of fractal dimension D from simu-
lations with free flow conditions or congested flow conditions.
The D values are obtained with the Yardstick algorithm. At
each value is associated the standard error of its mean.

Traffic phase D(free flow) D(congested flow)

Car flow 1.93±0.02 1.75±0.03

Car density 1.89±0.02 1.76±0.02

case is that of self-affine fractals, which are self-similar
only if magnified by a different factor along different di-
rections. The problem, which affects all those methods to
compute D which rely on a measure of length (the cor-
relation dimension, for example) can be outlined as fol-
lows. The original traffic data are (x, y) couples, with x
the cell number and y car density or car flow. The yard-
stick length L is computed as L =

√
∆x2 +∆y2. Now, x is

a number typically 0 < x < 10 000, whereas y is 0 < y < 1,
and therefore, ∆x > 200 (recall the above discussion on
the need to compute averages on a minimum number of
cells) while∆y is usually below 0.1. It is clear that with∆x
so great with respect to ∆y, ∆x2 + ∆y2 ≈ ∆x2 and the
value of L is practically given by that of ∆x. To put things
another way, let us consider Figure 4a but now imagine
using for the y axis the same scale used for the x axis, that
is 0 to 10 000. In the plot, the fragmented curve would be
flattened to a straight line, undistinguishable from the x
axis. Then no matter how fragmented the values of y may
be, D will be measured as 1. The only way to put into ev-
idence the fragmented nature of the curve and to measure
a D value different from 1 is to perform a data rescal-
ing. Therefore, the original (x, y) data were normalised
to 1 before being used to compute D with the yardstick
method. A normalization at 1 of the variables expands a
little y-values and shrinks about 4 orders of magnitude
x-values. As a result of this transformation the ups and
downs of the curve are enhanced and its fractality is in-
creased. It should be also evident that the result of a box
counting analysis is insensitive to such a normalization,
for this algorithm is not based on length calculations.

Summarising, the yardstick algorithm reveals itself
useless to compute the correct value ofD. But the method,
being sensitive to scale changes, is useful to enhance
the little differences between phases of traffic. The nor-
malised data, once analysed with the yardstick method,
provides D values higher than those obtained with the
box counting. Interestingly, free flow still has a greater D
value than congested flow and the difference between the
two is increased beyond statistical uncertainty, as reported
in Table 3. This somehow supports the hypothesis that a
difference in fractal dimension exists for the various phases
of traffic. In Figure 7 it is reported the plot of log(N) ver-
sus log(1/L) for one of the data sets used to obtain the
values reported in Table 3. As for the box counting, only
a subset of the points is used to measure the fractal di-
mension.

Fig. 7. Yardstick analysis of car density data as a function
of space from a simulation with free flow conditions. Values
of log(1/L)<2 correspond to a yardstick length greater than
the average number of cell used to compute averages. In this
region points stick to a line with slope D = 1.87± 0.04. Above
log(1/L) = 2, a departure from linearity is observed, which is
attributed to the lack of self-similarity due to the averaging.
The last part of the curve (above 4), is again a straight line,
whose slope is 1. Here the yardstick length is equal to or smaller
than the (normalized) distance between 2 cell. The yardstick
is now so small that the measured value of the curve length is
no more dependent on L.

4 Conclusions

The following considerations can be drawn from the above
analysis. Highway traffic exhibits self-similarity in both
car density and car flow. This is a non obvious result:
there is no direct relationship between non-linearity and
self-similarity, for a non-linear system could well be non
self-similar. Furthermore, the fractal dimension increases
moving from free flow towards congested flow. This sug-
gests that in congested traffic there is a smoothing of car
variables with respect to free flow, which seems reasonable
in a state where all cars are slowly moving along the high-
way, without many possibilities to overtake other cars or
to accelerate. Such a valuable result supports the view of
each state of traffic as a real phase and provides a further
distinction between traffic conditions. In this regard, it
would be interesting to check if D changes monotonously,
as does car density, or suddenly, as does the overtaking
probability, at each change of traffic condition. This is re-
ally difficult to verify by means of simulations and we are
currently trying to improve our model in order to obtain
good enough data.

Unlike other systems, described with the use of contin-
uous variables, we work with discrete quantities from the
very beginning. For this reason the range over which our
simulated data exhibits self-similar behaviour is slightly
less than 2 decades. This is a value typical of many real
systems. An important point is that we do not claim in this
article to fully demonstrate the fractal nature of traffic. We
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rather want to suggest to the scientific community and es-
pecially to those who study highway traffic to look into
their experimental data for the presence of self-similarity.
This has never been done before and our simulations at
least suggest that the search could yield a positive result.

As described in the previous section, car density and
car flow have D values greater in free flow than in con-
gested flow. Since these results comes mainly from the
use of the yardstick method, where data are stretched be-
fore being analysed, we cannot exclude that the different
values for D are a byproduct of this operation, without
relation to the real fractal dimension. This stretching is
also responsible for D values close to (but definitely less
than) 2. Again, we address to the analysis of experimental
data in order to clarify this point.
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